Kliv in i en oändlig värld av stories
Fakta
Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow
Key Features
• Get to grips with the different reinforcement and DRL algorithms for game development
•
• Learn how to implement components such as artificial agents, map and level generation, and audio generation
•
• Gain insights into cutting-edge RL research and understand how it is similar to artificial general research
Book Description
With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python.
Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent's productivity. As you advance, you'll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games.
By the end of this book, you'll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
What you will learn
• Understand how deep learning can be integrated into an RL agent
•
• Explore basic to advanced algorithms commonly used in game development
•
• Build agents that can learn and solve problems in all types of environments
•
• Train a Deep Q-Network (DQN) agent to solve the CartPole balancing problem
•
• Develop game AI agents by understanding the mechanism behind complex AI
•
• Integrate all the concepts learned into new projects or gaming agents
Who this book is for
If you're a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.
© 2020 Packt Publishing (E-bok): 9781839216770
Utgivningsdatum
E-bok: 3 januari 2020
1 miljon stories
Lyssna och läs offline
Exklusiva nyheter varje vecka
Kids Mode (barnsäker miljö)
För dig som vill prova Storytel.
1 konto
20 timmar/månad
Spara upp till 100 olyssnade timmar
Exklusivt innehåll varje vecka
Avsluta när du vill
Obegränsad lyssning på podcasts
För dig som lyssnar och läser ofta.
1 konto
100 timmar/månad
Exklusivt innehåll varje vecka
Avsluta när du vill
Obegränsad lyssning på podcasts
För dig som vill lyssna och läsa obegränsat.
1 konto
Lyssna obegränsat
Exklusivt innehåll varje vecka
Avsluta när du vill
Obegränsad lyssning på podcasts
För dig som vill dela stories med hela familjen.
2-6 konton
100 timmar/månad för varje konto
Exklusivt innehåll varje vecka
Avsluta när du vill
Obegränsad lyssning på podcasts
2 konton
239 kr /månadSvenska
Sverige