격이 다른 오디오북 생활을 경험해보세요!
논픽션
There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production.
This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you’ll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You’ll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detail as you explore best practices when using each AWS.
By the end of this AWS book, you'll be able to build, scale, and secure your own ML systems and pipelines, which will give you the experience and confidence needed to architect custom solutions using a variety of AWS services for ML engineering requirements.
© 2022 Packt Publishing (전자책 ): 9781803231389
출시일
전자책 : 2022년 10월 27일
200,000개 이상의 도서
키즈 모드(어린이 안전 환경)
오프라인 액세스를 위한 도서 다운로드
언제든지 취소
친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해
2-3 계정
무제한 액세스
2-3 계정
무제한 청취
언제든 해지하실 수 있어요
2 계정
17900 원 /월한국어
대한민국