격이 다른 오디오북 생활을 경험해보세요!
논픽션
Data is paramount in AI projects, especially for deep learning and generative AI, as forecasting accuracy relies on input datasets being robust. Acquiring additional data through traditional methods can be challenging, expensive, and impractical, and data augmentation offers an economical option to extend the dataset.
The book teaches you over 20 geometric, photometric, and random erasing augmentation methods using seven real-world datasets for image classification and segmentation. You’ll also review eight image augmentation open source libraries, write object-oriented programming (OOP) wrapper functions in Python Notebooks, view color image augmentation effects, analyze safe levels and biases, as well as explore fun facts and take on fun challenges. As you advance, you’ll discover over 20 character and word techniques for text augmentation using two real-world datasets and excerpts from four classic books. The chapter on advanced text augmentation uses machine learning to extend the text dataset, such as Transformer, Word2vec, BERT, GPT-2, and others. While chapters on audio and tabular data have real-world data, open source libraries, amazing custom plots, and Python Notebook, along with fun facts and challenges.
By the end of this book, you will be proficient in image, text, audio, and tabular data augmentation techniques.
© 2023 Packt Publishing (전자책 ): 9781803235912
출시일
전자책 : 2023년 4월 28일
태그
200,000개 이상의 도서
키즈 모드(어린이 안전 환경)
오프라인 액세스를 위한 도서 다운로드
언제든지 취소
친구 또는 가족과 함께 오디오북을 즐기고 싶은 분들을 위해
2-3 계정
무제한 액세스
2-3 계정
무제한 청취
언제든 해지하실 수 있어요
2 계정
17900 원 /월한국어
대한민국